
[DRAFT] How to Achieve 30 fps with BeagleBone Black, OpenCV, and

Logitech C920 Webcam [DRAFT]

Michael Darling
FndrPlayer39@gmail.com

September 24, 2013

This “How-to” outlines some of the issues associated with video capture on the BeagleBone Black (BBB) for robotic vision
applications using a USB webcam and OpenCV, and presents a possible solution for improved video capture performance
along with a set of detailed instructions. In particular, this document addresses the challenge of achieving a suitably high
framerate (30 fps) for robotic vision applications making use of the BBB. If you wish, you can skip the introductory material
and jump directly to the How-to.

Contents

Problem Background 1
First Attempts with the PlayStation 3 Eye . 2
Shift to the Logitech C920 and MJPEG Format . 2
JPEG Decompression with OpenCV . 2

How-To: Achieve 30 fps 2
Disclaimer . 2
Prerequisites . 3
Objective . 3
1. Install libjpeg-turbo . 3
2. Setting up for Distributed Cross-Compilation (Optional, but Recommended) . 4
3. Building OpenCV with libjpeg-turbo and NEON . 7
4. Testing . 8

Testing the Framerate . 8
Incorporating Custom Capture Code as an OpenCV object . 8

Acknowledgments 8

Appendix 10
framegrabberCV.c (Matthew Witherwax) . 10

Problem Background

Many robotic vision applications require video capture and frame processing to occur at a high rate of speed. For example,
my master’s thesis seeks to implement autonomous close formation flight of two remote controlled aircraft using computer
vision for localization. In short, the lead aircraft will be outfitted with very high intensity LEDs on each of its wingtips and
tail surfaces while the following aircraft will be equipped with a vision system consisting of the BeagleBone Black and a USB
webcam. Both vehicles will be controlled using the open source ArduPilot Mega autopilot. The OpenCV vision software
running on the BBB will detect the LEDs in each video frame, estimate the 3-D relative position and orientation of the
leader, and pass this information over to the autopilot which will handle the control. This type of application requires high
bandwidth localization estimates for the follower to maintain its position behind the leader. The rate at which video frames
can be processed and captured becomes even more important considering the fact that the LEDs may not be detected in
every frame due to background noise in the image.

1

mailto:FndrPlayer39@gmail.com
http://diydrones.com/profiles/blogs/ardupilot-mega-home-page

First Attempts with the PlayStation 3 Eye

For me, a reasonable place to start was by using the PlayStation 3 Eye USB webcam in combination with OpenCV.
The PS3 Eye is used by many “do-it-yourself” robotics enthusiasts due to its availability, very low cost, high framerate (up
to 120 fps at 320 × 240 and up to 60 fps at 640 × 480 resolution), and multi-platform support by 3rd party drivers. [1]
Unfortunately for those who want to use the PS3 Eye with the BBB, this kind of performance can’t be expected—at least
not easily.

If you were to set up a simple OpenCV video capture program and attempted to operate the PS3 eye at 640 × 480
resolution at 60 fps, you would end up with repeated “select timeout” errors and no video frames. You would have identical
results at 30 and 15 fps as well, however if you settle for 320× 240 resolution, you would get a stream of video, but always at
30 fps regardless of the framerate you set. Why? It turns out that the OpenCV functions for setting the video framerate do
not work (at least for Video4Linux devices) and the default 30 fps is used. In order to set the camera framerate, you have
to write your own capture code using the Video4Linux2 API. [2] But even after using custom capture code, you would find
that you can only acquire 640 × 480 frames with the camera set to 15 fps. And even then you would actually be capturing
frames at about 7 fps at best.

After more days. . . weeks. . . months than I’m willing to admit, I finally came to find that issue lies with the way the PS3
Eye transfers the frames over USB. The PS3 Eye captures video in the uncompressed YUYV pixel format and transfers the
frames in bulk mode, which guarantees data transmission but has no guarantee of latency. In the case of the BBB, the large
amount of data being sent by the webcam saturates the bulk allotment on the BBB’s USB bandwidth and select timeout
errors result. [3]

Shift to the Logitech C920 and MJPEG Format

In order to reduce the USB bandwidth required by the webcam, a compressed pixel format such as MJPEG or H.264 can
be used. The PS3 Eye does not support video compression, so I looked to the Logitech C920 USB webcam instead. H.264
compression comes at a cost however, and will set you back about $72 to purchase a C920 on Amazon. (Other cameras,
such as the Logitech C270 also support the MJPEG pixel format, which I ended up using over H.264. However, using the
Logitech C270 will require a little extra work. The C270 does not include the Huffman table as part of the MJPEG stream
and may need to be added for the video frames to be correctly read by OpenCV and other programs. See [3] for more.)

Since the C920 transfers compressed images in isochronos mode, it can easily deliver 640 × 480 frames at 30 fps using
very little CPU. [3] If you save the video frames to individual JPEG image files, you can easily transfer them to your desktop
computer and view them in any image viewer. If we want to use the MJPEG stream in a vision application written with
OpenCV though, these images will have to be decompressed in real-time and converted to a cv::Mat object so that OpenCV
can work with the image.

JPEG Decompression with OpenCV

Luckily, OpenCV includes functions for decoding images from a buffer, specifically the cvDecodeImage() and imdecode()

functions, depending on if you are working in C or C++. [4] [5] The primary reason for using MJPEG over the H.264
compression format is that MJPEG uses intraframe compression whereas H.264 uses inter frame compression. Put simply,
each MJPEG frame gets compressed individually as a JPEG image and each compressed frame is independent of all others.
H.264 on the other hand, uses interframe prediction to “take advantage from temporal redundancy between neighboring
frames to achieve higher compression rates”. [6] While this is good for compressing video streams meant to be viewed as a
continuous stream, it is not well-suited for embedded vision applications since H.264 decompression is CPU intensive and
can exhibit decompression artifacts and lag when there is a lot of motion in the video.

If you installed OpenCV on your BBB with a package manager such as Ubuntu’s Advanced Packaging Tool (apt-get)
or Ångstrom’s opkg, odds are that you will still only see about 10-20 fps when you try and capture at 640× 480 resolution
at the 30 fps setting. And if you profile your code by including calls to time() from the <ctime> header file, you will see
that most of the time spent by your program is dedicated to decoding the image and converting it to the cv::Mat object.
Moreover, the decompression eats up nearly all of the CPU. Luckily, there are some steps that you can take to significantly
reduce decompression time and CPU usage—leaving more time and resources for your vision program to process the frames.

How-To: Achieve 30 fps

Disclaimer

Please keep in mind that I am not an expert in embedded Linux, OpenCV, or C/C++ programming. I am a graduate
student studying aerospace engineering. I have only been working with embedded hardware, Linux, OpenCV, and C/C++
for about a year. My thesis has taken me on a detour into investigating ways to improve the framerate when using a USB
webcam with the BeagleBone Black. This “How-To” is essentially a compilation of other resources and an outline of the

2

steps that I used to solve this particular problem—your mileage may vary. As always, it is your responsibility to understand
the commands you are invoking. I have spent a lot of time on this problem and have relied heavily on the help of the open
source community. I have put this guide together as a way of giving back to the open source community, and hope that some
can find it useful. If you have any comments or suggestions for improving this “How-To” please email me at the address
provided at the top of this page.

Prerequisites

This process can be followed with some slight variations to your setup. For reference, here is a list of what hardware and
software I used.

• BeagleBone Black, Rev. A5

• BBB running Ubuntu 13.04 eMMC “flasher” image provided by [7]

• Logitech C920 USB webcam

• x86 PC running Ubuntu 13.04

• LAN network

• USB thumb drive

Before attempting any of these steps, you should already be familiar with the basics of using ssh to connect to the BBB over
USB or a LAN network. You should also be comfortable working from the Linux command line and have some experience
with GNU compilers, cmake, and the “configure, make, make install” build processes.

Objective

The main objective of this How-to is to take advantage of NEON hardware acceleration available on the BBB. [8] The
details of how NEON acceleration works are a bit over my head, but its usefulness is obvious: “NEON technology can
accelerate multimedia and signal processing algorithms such as video encode/decode, 2D/3D graphics, gaming, audio and
speech processing, image processing, telephony, and sound synthesis by at least 3x the performance of ARMv5 and at least
2x the performance of ARMv6 SIMD.” You can also see the clear benefits here. [16]

In order to use NEON, we will (1) build and install a more optimized JPEG codec called “libjpeg-turbo”, and (2) rebuild
OpenCV with NEON enabled. The latter is a bit tricky due to the limited processing power and storage capacity of the
BBB. To speed up the build, I will introduce an easy way to cross-compile large projects for the BBB.

1. Install libjpeg-turbo

libjpeg-turbo is a highly-optimized version of the libjpeg JPEG codec library that is designed to take advantage of NEON
acceleration. According to the libjpeg-turbo project page, the library is capable of encoding/decoding JPEG images 2–4 times
faster than the standard libjpeg library. [9]

On the BBB, download the libjpeg-turbo source tarball and then extract it.

wget http://sourceforge.net/projects/libjpeg-turbo/files/1.3.0/libjpeg-turbo-1.3.

0.tar.gz

tar xzvf libjpeg-turbo-1.3.0.tar.gz

Enter the source directory, then create a build directory and enter it.

cd libjpeg-turbo-1.3.0

mkdir build

cd build

By default libjpeg-turbo will install into /opt/libjpeg-turbo. You may install to a different directory
by passing the --prefix option to the configure script. However, the remainder of these instructions
will assume that libjpeg-turbo was installed in its default location.

../configure CPPFLAGS=’-O3 -pipe -fPIC -mfpu=neon -mfloat-abi=hard’

make

sudo make install

3

http://sourceforge.net/projects/libjpeg-turbo/files/1.3.0/libjpeg-turbo-1.3.0.tar.gz
http://sourceforge.net/projects/libjpeg-turbo/files/1.3.0/libjpeg-turbo-1.3.0.tar.gz

Note that the -O3, -fPIC, and -mfpu=neon are particularly important as they enable code optimization, position-independent
code generation, and NEON hardware acceleration, respectively.

2. Setting up for Distributed Cross-Compilation (Optional, but Recommended)

Since OpenCV is such a large project and the BBB has limited processing power, it is much more convenient to set up cross-
compilation. Typically, setting up a cross-compilation environment can be a tedious process and is especially cumbersome
when building a large project that has many dependencies which, in turn, depend on other dependencies, etc. . . etc.

Fortunately with distributed cross compiling, you can take advantage of the libraries already installed on the BBB while
still using your (probably x86) PC to cross-compile the object files much faster than if they were compiled locally. With
distributed cross-compilation you can execute the build from the BBB just as if you were building on the BBB, itself. Here
is how you can set up a distributed cross-compiler with distcc: [10]

On your PC, download the 32-bit version of Linaro GCC and the associated libraries. I found the
appropriate cross-compiler from [11].

sudo apt-get install ia32-libs

wget https://launchpad.net/linaro-toolchain-binaries/trunk/2013.08/+download/gcc-

linaro-arm-linux-gnueabihf-4.8-2013.08_linux.tar.xz

Extract the files and set the cross-compiler (CC) to the one you just installed

tar xzvf gcc-linaro-arm-linux-gnueabihf-4.8-2013.08 linux.tar.xz

export CC=‘pwd‘/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08 linux/bin/arm-linux-gnueabihf-

Confirm that the correct cross-compiler is active.

${CC}gcc --version

>> arm-linux-gnueabihf-gcc (crosstool-NG linaro-1.13.1-4.8-2013.08 - Linaro GCC 2013.08)

4.8.2 20130805 (prerelease)

>> Copyright (C) 2013 Free Software Foundation, Inc.

>> This is free software; see the source for copying conditions. There is NO

>> warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Next, we will test that the compiler works by cross-compiling a simple test program for the BBB.
Create a file called hello world.c and paste into it the following:

int main(void)

{
printf("Hello, cross-compilation world !\n");
return 0;

}

Compile the program with:

${CC}gcc hello world.c -o hello world

Try running the program on your PC and confirm that it does not run.

./hello world

You should be returned an error similar to the following:

bash: ./hello world: cannot execute binary file

Now copy the executable to the BBB using scp. Your command should be similar to:

scp hello world ubuntu@192.168.7.2:∼/hello world

Then execute the program on the BBB. You should see the “Hello, cross-compilation world !” message
written to stdout.

cd ∼

./hello world

4

https://launchpad.net/linaro-toolchain-binaries/trunk/2013.08/+download/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux.tar.xz
https://launchpad.net/linaro-toolchain-binaries/trunk/2013.08/+download/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux.tar.xz

>> Hello, cross-compilation world !

If the above example of cross-compilation worked, you can now move on to setting up for distributed cross-compilation.
We will begin by installing distcc on both the PC and the BBB. According to [11], we should build the most recent version
of distcc from source to take advantage of a few features.

On both the PC and the BBB, begin by installing some prerequisite packages.

sudo apt-get install subversion autoconf automake python python-dev binutils-dev

libgtk2.0-dev

Again, on both machines, download the distcc source, and install it

svn checkout http://distcc.googlecode.com/svn/trunk/distcc-read-only

cd distcc-read-only

./autogen.sh

./configure --with-gtk --disable-Werror

make

sudo make install

Now that distcc is installed, we need to create some symbolic links on the BBB. Be careful to use
the correct paths here or else you may overwrite one or more of your GNU compilers.

First, check which gcc and distcc are being called by default

which gcc

>> /usr/bin/gcc

which distcc

>> /usr/local/bin/distcc

Create the symlinks.

sudo ln -s /usr/local/bin/distcc /usr/local/bin/gcc

sudo ln -s /usr/local/bin/distcc /usr/local/bin/g++

sudo ln -s /usr/local/bin/distcc /usr/local/bin/c++

sudo ln -s /usr/local/bin/distcc /usr/local/bin/cpp

Now check your PATH variable to see if /usr/local/bin is included before /usr/bin. If it is not, then
prepend /usr/local/bin to your PATH. For example:

echo $PATH

>> /usr/sbin:/usr/bin:/sbin:/bin

export PATH=/usr/local/bin:$PATH

So now you can check distcc is being called correctly (through the symlink you just created) by
checking the following:

which gcc

/usr/local/bin/gcc

If this doesn’t check out, then go back and make sure that you have all the symbolic links correct and
prepended /usr/local/bin to your PATH variable. It is important that you add to the beginning of
the path since gcc/cc/g++/c++ get called in the order they appear on the path.

Now we will create some environment variables for distcc in order to control some settings. I will
just introduce the commands here, but if you want to read more, refer to [11] and [12]. You will
need to have a working network (Either over LAN or USB through which the BBB and your PC can
communicate.) The first environment variable sets the IP address of your PC that will be doing the
compilation followed by a forward slash and the “number of jobs per machine”. A good rule of thumb
is to use twice your number of processor cores. So for me, I would use:

export DISTCC HOSTS="192.168.2.3/4"

5

http://distcc.googlecode.com/svn/trunk/ distcc-read-only

For the rest of the environment variables use the following:

export DISTCC BACKOFF PERIOD=0

export DISTCC IO TIMEOUT=3000

export DISTCC SKIP LOCAL RETRY=1

In my case, I found that I had to execute the following command on the BBB before trying to build
OpenCV so that the cmake build process would use gcc rather than cc, which I did not have installed:

export CC=/usr/local/bin/gcc

Now, we have to move back to the PC and create some similar symlinks.

cd gcc-linaro-arm-linux-gnueabihf-4.8-2013.08 linux/bin

ln -s arm-linux-gnueabihf-gcc gcc

ln -s arm-linux-gnueabihf-cc cc

ln -s arm-linux-gnueabihf-g++ g++

ln -s arm-linux-gnueabihf-c++ c++

ln -s arm-linux-gnueabihf-cpp cpp

You will have to prepend to your path as well to make the cross-compiler active.

export PATH=$HOME/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08 linux/bin:$PATH

which gcc

>> /home/uname/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08 linux/bin/gcc

When you are about ready to start compiling OpenCV, you can launch the distcc daemon with
the following command (Your command may be different depending on the number of jobs, and your
BBB’s IP address):

distccd --daemon --jobs 4 --allow 192.168.2.9 --verbose --log-stderr --no-detach

At this point, you could begin building/compiling any program or project on the BBB and you should see some activity
on your PC as it receives the jobs from the BBB and compiles the object files. In this case, you probably want to build
OpenCV—for which you should go through the next section. But once you are done building, you will most likely want to
be able to disable distcc so that you can compile programs natively on your BBB and PC again. Here is how you can disable
distcc.

On the BBB, disable all of the symlinks you created.

sudo rm /usr/local/bin/{gcc, g++, cpp, c++}

The easiest way to restore all of your environment variables is simply to restart the BBB.

sudo reboot

Now you will want to confirm that gcc is called instead of distcc. You can use the following commands.
You may also want to try compiling a small hello world.c example.

which gcc

>> /usr/bin/gcc

If you end up with errors that the gcc compiler doesn’t exist, then you can remove then reinstall the
compilers with:

sudo apt-get remove --purge build-essential

sudo apt-get install build-essential

Then we will do similarly on the PC. Make sure you are in the directory that you installed the cross-
compiler: gcc-linaro-arm-linux-gnueabihf-4.8-2013.08 linux/bin

sudo rm gcc cc cpp g++ c++

Then reboot your computer to restore the PATH. Again, test to confirm that you can compile programs
locally on your PC.

6

3. Building OpenCV with libjpeg-turbo and NEON

Now we will build OpenCV with libjpeg-turbo as the JPEG codec and with NEON hardware acceleration enabled. You
do not have to use distributed cross-compiling, as described above, but it will dramatically reduce the build time. Due to
the limited storage on the BBB, you will probably need some kind of external storage. I actually used a 16 GB µSD card
and a USB card reader, but a regular USB thumb drive will probably work fine.

The first thing we have to do is reformat the USB drive with an ext2 partition. You might be able to use another kind
of filesystem, but it needs to support symbolic links—which ext2 does. Depending on your OS this process will be different,
but if your are running Ubuntu insert the USB drive and start up GParted. [13] (If GParted is not installed, you can install
it with sudo apt-get install gparted.) In the top right corner select your USB drive. Please be certain that you have
chosen the correct device, or else you could end up erasing data on your PC’s hard drive. Go to Device > Create Partition
Table and accept the prompt. Then to create the ext2 partition, right click on the “unallocated space” partition and in the
File System drop-down menu, select ext2 and “Add” the partition. When complete, eject the USB drive and remove it.

From the BBB’s terminal we need to mount the device. To know which drive is the USB drive, use
the following command, insert the USB drive, and repeat the command. The new drive is the thumb
drive. I will assume this /dev/sda with one partition, /dev/sda1 as it was for me.

ls /dev/sd*

I found that it was easiest to do the following commands as root. (Be careful!)

sudo su

Create a mount point and mount the filesystem.

mkdir -p /mnt/ext2

mount -t ext2 /dev/sda1 /mnt/ext2

Navigate into the directory and download the OpenCV source code, then extract the files. [14]

cd /mnt/ext2

wget git clone https://github.com/Itseez/opencv.git

Enter the directory that is created—whatever it is called. Then create a build directory and enter
that.

cd OpenCV

mkdir release

cd release

Now we will run cmake with a bunch of flags that should enable libjpeg-turbo and NEON. note that
some of these flags, such as USE VFPV3=ON and USE NEON=ON may have no effect, as they only work
when cross-compiling without distcc [15]. That is okay—the -mfpu=neon flag will enable NEON for
us. I’ve just gone ahead and included all of the flags that I used anyways. If you are using distcc to
cross-compile, make sure that you see some activity in your PC’s terminal after you execute the cmake
command. (The PC should compile a few programs while cmake tests the compilers it has available.)

cmake -D CMAKE C FLAGS=’-O3 -mfpu=neon -mfloat-abi=hard’ -D

CMAKE CXX FLAGS=’-O3 -mfpu=neon -mfloat-abi=hard’ -D CMAKE BUILD TYPE=RELEASE

-D CMAKE INSTALL PREFIX=/usr/local -D BUILD PYTHON SUPPORT=ON -DWITH JPEG=ON

-DBUILD JPEG=OFF -DJPEG INCLUDE DIR=/opt/libjpeg-turbo/include/

-DJPEG LIBRARY=/opt/libjpeg-turbo/lib/libjpeg.a -DUSE VFPV3=ON -DUSE NEON=ON ..

Take careful note of the information displayed to stdout after cmake runs. You will want to make sure
that FFMPEG support is enabled, -mfpu=neon appears in the release build flags, and that the JPEG
codec is libjpeg-turbo. If everything looks okay, go ahead and begin the build. . . Even with distcc,
the build will take awhile.

make

Now you can install the files to their default location, /usr/local and exit as the root user.

7

https://github.com/Itseez/opencv.git

make install

exit

At this point, you will want to make sure that you can compile a simple OpenCV program. You
can use the framegrabberCV.c program used in the testing section. I did this by navigating to the
directory where I saved the program and executing: (See the Testing section)

gcc framegrabberCV.c -o framegrabberCV ‘pkg-config --cflags --opencv opencv

libv4l2‘ -lm

If the program compiles successfully, its likely that everything installed correctly. We can now un-
mount the USB drive. (NOTE: I had some issues with the USB drive being corrupted after removing
it from the BBB. You may want to first compress the OpenCV source directory (including build files)
to a .tar.gz and transfer it to your PC using scp.) When you are ready to remove the drive:

sudo umount /dev/sda1

sudo umount /mnt/ext2

sudo eject /dev/sda

sudo rm -rf /mnt/ext2

4. Testing

Testing the Framerate

Now it’s time to test the framerate. First, download the program framegrabberCV.c to the BBB and compile it.

gcc framegrabberCV.c -o framegrabberCV ‘pkg-config --cflags --opencv opencv

libv4l2‘ -lm

I wanted to make sure the processor was running at its full 1 GHz, so I set it using:

sudo cpufreq-set -g performance

Note that you can set this back to default by executing:

sudo cpufreq-set -g ondemand

Make sure that the webcam is plugged in. Now you can test the framerate. [17]

time ./framegrabberCV -f mjpeg -H 480 -W 640 -c 1000 -I 30 -o

Now take the the number of frames you captured and converted to OpenCV image objects (in this
case, 1000) and divide it by the “real” time provided by the time function to get the framerate.

Incorporating Custom Capture Code as an OpenCV object

If you like, you can make some changes to the custom capture code in frmegrabberCV.c and compile it as a C++ class
instead of a standalone command line program. That way you can create a capture object within your OpenCV code, grab
and decode images, and process it using OpenCV functions and methods.

< To be continued...>
For now, take a look at [18]

Acknowledgments

I would like to give thanks to those in the open source community who have been enormously helpful. Thanks to Matthew
Witherwax for all of his help in arriving at a solution [3]; Martin Fox for providing custom Video4Linux capture code [18];
Alexander Corcoran for answering my newbie Linux questions [19]; Robert C. Nelson for maintaining Ubuntu for BBB [7];
Max Thrun for answering some questions about the PS3 Eye drivers [20]; and everyone else who has had the patience to help
me along my way.

8

References

[1] http://mechomaniac.com/node/32

[2] http://linuxtv.org/downloads/v4l-dvb-apis/

[3] http://blog.lemoneerlabs.com/post/BBB-webcams

[4] http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html

[5] http://blog.lemoneerlabs.com/post/opencv-mjpeg

[6] http://en.wikipedia.org/wiki/Inter_frame

[7] http://elinux.org/BeagleBoardUbuntu

[8] http://www.arm.com/products/processors/technologies/neon.php

[9] http://libjpeg-turbo.virtualgl.org

[10] http://jeremy-nicola.info/portfolio-item/cross-compilation-distributed-compilation-for-the-

raspberry-pi/

[11] http://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-ARMCrossCompiler:GCC

[12] https://code.google.com/p/distcc/

[13] http://www.sitepoint.com/ubuntu-12-04-lts-precise-pangolin-using-gparted-to-partition-a-hard-disk/

[14] http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-

installation

[15] http://docs.opencv.org/doc/tutorials/introduction/crosscompilation/arm_crosscompile_with_cmake.html

[16] http://elinux.org/images/1/1c/Optimizing_the_Embedded_Platform_Using_OpenCV.pdf

[17] https://groups.google.com/forum/#!msg/beagleboard/G5Xs2JuwD_4/gCl48Nj61BwJ

[18] https://bitbucket.org/beldenfox/cvcapture/src

[19] http://digitalcommons.calpoly.edu/cpesp/50/

[20] http://bear24rw.blogspot.com/2009/11/ps3-eye-driver-patch.html

9

http://mechomaniac.com/node/32
http://linuxtv.org/downloads/v4l-dvb-apis/
http://blog.lemoneerlabs.com/post/BBB-webcams
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html
http://blog.lemoneerlabs.com/post/opencv-mjpeg
http://en.wikipedia.org/wiki/Inter_frame
http://elinux.org/BeagleBoardUbuntu
http://www.arm.com/products/processors/technologies/neon.php
http://libjpeg-turbo.virtualgl.org
http://jeremy-nicola.info/portfolio-item/cross-compilation-distributed-compilation-for-the-raspberry-pi/
http://jeremy-nicola.info/portfolio-item/cross-compilation-distributed-compilation-for-the-raspberry-pi/
http://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-ARMCrossCompiler:GCC
https://code.google.com/p/distcc/
http://www.sitepoint.com/ubuntu-12-04-lts-precise-pangolin-using-gparted-to-partition-a-hard-disk/
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation
http://docs.opencv.org/doc/tutorials/introduction/crosscompilation/arm_crosscompile_with_cmake.html
http://elinux.org/images/1/1c/Optimizing_the_Embedded_Platform_Using_OpenCV.pdf
https://groups.google.com/forum/#!msg/beagleboard/G5Xs2JuwD_4/gCl48Nj61BwJ
https://bitbucket.org/beldenfox/cvcapture/src
http://digitalcommons.calpoly.edu/cpesp/50/
http://bear24rw.blogspot.com/2009/11/ps3-eye-driver-patch.html

Appendix

framegrabberCV.c (Matthew Witherwax)

Download

/**

* framegrabber Version 0.1 *

* Copyright (C) 2013 by Matthew Witherwax (lemoneer) *

* lemoneer@outlook.com *

* blog.lemoneerlabs.com *

* *

* based on V4L2 Specification, Appendix B: Video Capture Example *

* (http://linuxtv.org/downloads/v4l-dvb-apis/capture-example.html) *

* and work by Matthew Witherwax on v4l2grab *

* (https://github.com/twam/v4l2grab) *

BSD LICENSE

Copyright (c) 2013, Matthew Witherwax

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

***/

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <string.h>

#include <assert.h>

#include <getopt.h> /* getopt_long() */

#include <fcntl.h> /* low-level i/o */

#include <unistd.h>

#include <errno.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/time.h>

#include <sys/mman.h>

10

https://mail.google.com/mail/u/0/?ui=2&ik=d625313160&view=att&th=14142eb536bf6074&attid=0.1&disp=safe&realattid=f_hlvhjtcq0&zw

#include <sys/ioctl.h>

#include <time.h>

#include <linux/videodev2.h>

#include "opencv2/core/core_c.h"

#include "opencv2/highgui/highgui_c.h"

#define CLEAR(x) memset(&(x), 0, sizeof(x))

enum io_method {

IO_METHOD_READ,

IO_METHOD_MMAP,

IO_METHOD_USERPTR,

};

struct buffer {

void *start;

size_t length;

};

static char *dev_name = "/dev/video0";

static enum io_method io = IO_METHOD_MMAP;

static int fd = -1;

struct buffer *buffers;

static unsigned int n_buffers;

static int out_buf;

static int frame_count = 1;

static int set_format;

static unsigned int width = 640;

static unsigned int height = 480;

static unsigned int fps = 30;

static unsigned int timeout = 1;

static unsigned int timeouts_max = 1;

static char *out_name = "capture.jpg";

/* Allowed formats: V4L2_PIX_FMT_YUYV, V4L2_PIX_FMT_MJPEG, V4L2_PIX_FMT_H264

* The default will not be used unless the width and/or height is specified

* but the user does not specify a pixel format */

static unsigned int pixel_format = V4L2_PIX_FMT_MJPEG;

/* Signal Handling

* Clean up on Ctrl-C as opposed to leaving

* the device in an inconsistent state*/

static int s_interrupted = 0;

static void s_signal_handler (int signal_value)

{

s_interrupted = 1;

}

static void s_catch_signals (void)

{

struct sigaction action;

action.sa_handler = s_signal_handler;

action.sa_flags = 0;

sigemptyset (&action.sa_mask);

sigaction (SIGINT, &action, NULL);

sigaction (SIGTERM, &action, NULL);

}

11

static void errno_exit(const char *s) {

fprintf(stderr, "%s error %d, %s\n", s, errno, strerror(errno));

exit(EXIT_FAILURE);

}

static int xioctl(int fh, int request, void *arg) {

int r;

do {

r = ioctl(fh, request, arg);

} while (-1 == r && EINTR == errno);

return r;

}

static int countP = 0;

static int cc = 0;

static void process_image(const void *p, int size) {

if (out_buf) {

// Mike, Take this out to convert

// every frame captured

if (countP % 3 != 0)

{

countP += 1;

return;

}

countP += 1;

cc += 1;

CvMat mat;

IplImage * img;

mat = cvMat(480, 640, CV_8UC3, (void*)p);

// decode the image

img = cvDecodeImage(&mat, 1);

// release the image

cvReleaseImage(&img);

}

}

static int read_frame(void) {

struct v4l2_buffer buf;

unsigned int i;

switch (io) {

case IO_METHOD_READ:

if (-1 == read(fd, buffers[0].start, buffers[0].length)) {

switch (errno) {

case EAGAIN:

return 0;

case EIO:

/* Could ignore EIO, see spec. */

/* fall through */

default:

errno_exit("read");

}

12

}

process_image(buffers[0].start, buffers[0].length);

break;

case IO_METHOD_MMAP:

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {

switch (errno) {

case EAGAIN:

return 0;

case EIO:

/* Could ignore EIO, see spec. */

/* fall through */

default:

errno_exit("VIDIOC_DQBUF");

}

}

assert(buf.index < n_buffers);

process_image(buffers[buf.index].start, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))

errno_exit("VIDIOC_QBUF");

break;

case IO_METHOD_USERPTR:

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {

switch (errno) {

case EAGAIN:

return 0;

case EIO:

/* Could ignore EIO, see spec. */

/* fall through */

default:

errno_exit("VIDIOC_DQBUF");

}

}

for (i = 0; i < n_buffers; ++i)

if (buf.m.userptr == (unsigned long) buffers[i].start

&& buf.length == buffers[i].length)

break;

13

assert(i < n_buffers);

process_image((void *) buf.m.userptr, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))

errno_exit("VIDIOC_QBUF");

break;

}

return 1;

}

static void grab_frames(void) {

clock_t begin, end;

double time_spent;

unsigned int count;

unsigned int timeout_count;

count = frame_count;

timeout_count = timeouts_max;

begin = clock();

while (count-- > 0) {

for (;;) {

if (s_interrupted) {

fprintf(stderr, "\nInterrupt received - aborting capture\n");

return;

}

fd_set fds;

struct timeval tv;

int r;

FD_ZERO(&fds);

FD_SET(fd, &fds);

/* Timeout. */

tv.tv_sec = timeout;

tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);

if (-1 == r) {

if (EINTR == errno)

continue;

errno_exit("select");

}

if (0 == r) {

if (timeout_count > 0) {

timeout_count--;

} else {

fprintf(stderr, "select timeout\n");

exit(EXIT_FAILURE);

}

}

14

if (read_frame())

break;

/* EAGAIN - continue select loop. */

}

}

end = clock();

time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

fprintf(stderr, "Captured %i frames and Processed %i in %f seconds\n", frame_count, cc, time_spent);

}

static void mainloop(void) {

grab_frames();

}

static void stop_capturing(void) {

enum v4l2_buf_type type;

switch (io) {

case IO_METHOD_READ:

/* Nothing to do. */

break;

case IO_METHOD_MMAP:

case IO_METHOD_USERPTR:

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))

errno_exit("VIDIOC_STREAMOFF");

break;

}

}

static void start_capturing(void) {

unsigned int i;

enum v4l2_buf_type type;

switch (io) {

case IO_METHOD_READ:

/* Nothing to do. */

break;

case IO_METHOD_MMAP:

for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

buf.index = i;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))

errno_exit("VIDIOC_QBUF");

}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");

break;

case IO_METHOD_USERPTR:

for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

15

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_USERPTR;

buf.index = i;

buf.m.userptr = (unsigned long) buffers[i].start;

buf.length = buffers[i].length;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))

errno_exit("VIDIOC_QBUF");

}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");

break;

}

}

static void uninit_device(void) {

unsigned int i;

switch (io) {

case IO_METHOD_READ:

free(buffers[0].start);

break;

case IO_METHOD_MMAP:

for (i = 0; i < n_buffers; ++i)

if (-1 == munmap(buffers[i].start, buffers[i].length))

errno_exit("munmap");

break;

case IO_METHOD_USERPTR:

for (i = 0; i < n_buffers; ++i)

free(buffers[i].start);

break;

}

free(buffers);

}

static void init_read(unsigned int buffer_size) {

buffers = calloc(1, sizeof (*buffers));

if (!buffers) {

fprintf(stderr, "Out of memory\n");

exit(EXIT_FAILURE);

}

buffers[0].length = buffer_size;

buffers[0].start = malloc(buffer_size);

if (!buffers[0].start) {

fprintf(stderr, "Out of memory\n");

exit(EXIT_FAILURE);

}

}

static void init_mmap(void) {

struct v4l2_requestbuffers req;

16

CLEAR(req);

req.count = 4;

req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

req.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {

if (EINVAL == errno) {

fprintf(stderr, "%s does not support "

"memory mapping\n", dev_name);

exit(EXIT_FAILURE);

} else {

errno_exit("VIDIOC_REQBUFS");

}

}

if (req.count < 2) {

fprintf(stderr, "Insufficient buffer memory on %s\n",

dev_name);

exit(EXIT_FAILURE);

}

buffers = calloc(req.count, sizeof (*buffers));

if (!buffers) {

fprintf(stderr, "Out of memory\n");

exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {

struct v4l2_buffer buf;

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

buf.index = n_buffers;

if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))

errno_exit("VIDIOC_QUERYBUF");

buffers[n_buffers].length = buf.length;

buffers[n_buffers].start =

mmap(NULL /* start anywhere */,

buf.length,

PROT_READ | PROT_WRITE /* required */,

MAP_SHARED /* recommended */,

fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start)

errno_exit("mmap");

}

}

static void init_userp(unsigned int buffer_size) {

struct v4l2_requestbuffers req;

CLEAR(req);

17

req.count = 4;

req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

req.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {

if (EINVAL == errno) {

fprintf(stderr, "%s does not support "

"user pointer i/o\n", dev_name);

exit(EXIT_FAILURE);

} else {

errno_exit("VIDIOC_REQBUFS");

}

}

buffers = calloc(4, sizeof (*buffers));

if (!buffers) {

fprintf(stderr, "Out of memory\n");

exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < 4; ++n_buffers) {

buffers[n_buffers].length = buffer_size;

buffers[n_buffers].start = malloc(buffer_size);

if (!buffers[n_buffers].start) {

fprintf(stderr, "Out of memory\n");

exit(EXIT_FAILURE);

}

}

}

static void init_device(void) {

struct v4l2_capability cap;

struct v4l2_cropcap cropcap;

struct v4l2_crop crop;

struct v4l2_format fmt;

struct v4l2_streamparm frameint;

unsigned int min;

if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {

if (EINVAL == errno) {

fprintf(stderr, "%s is no V4L2 device\n",

dev_name);

exit(EXIT_FAILURE);

} else {

errno_exit("VIDIOC_QUERYCAP");

}

}

if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {

fprintf(stderr, "%s is no video capture device\n",

dev_name);

exit(EXIT_FAILURE);

}

switch (io) {

case IO_METHOD_READ:

if (!(cap.capabilities & V4L2_CAP_READWRITE)) {

fprintf(stderr, "%s does not support read i/o\n",

18

dev_name);

exit(EXIT_FAILURE);

}

break;

case IO_METHOD_MMAP:

case IO_METHOD_USERPTR:

if (!(cap.capabilities & V4L2_CAP_STREAMING)) {

fprintf(stderr, "%s does not support streaming i/o\n",

dev_name);

exit(EXIT_FAILURE);

}

break;

}

/* Select video input, video standard and tune here. */

CLEAR(cropcap);

cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {

crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

crop.c = cropcap.defrect; /* reset to default */

if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {

switch (errno) {

case EINVAL:

/* Cropping not supported. */

break;

default:

/* Errors ignored. */

break;

}

}

} else {

/* Errors ignored. */

}

CLEAR(fmt);

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (set_format) {

fmt.fmt.pix.width = width;

fmt.fmt.pix.height = height;

fmt.fmt.pix.pixelformat = pixel_format;

fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))

errno_exit("VIDIOC_S_FMT");

if (fmt.fmt.pix.pixelformat != pixel_format) {

fprintf(stderr,"Libv4l didn’t accept pixel format. Can’t proceed.\n");

exit(EXIT_FAILURE);

}

/* Note VIDIOC_S_FMT may change width and height. */

19

} else {

/* Preserve original settings as set by v4l2-ctl for example */

if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))

errno_exit("VIDIOC_G_FMT");

}

CLEAR(frameint);

/* Attempt to set the frame interval. */

frameint.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

frameint.parm.capture.timeperframe.numerator = 1;

frameint.parm.capture.timeperframe.denominator = fps;

if (-1 == xioctl(fd, VIDIOC_S_PARM, &frameint))

fprintf(stderr, "Unable to set frame interval.\n");

/* Buggy driver paranoia. */

min = fmt.fmt.pix.width * 2;

if (fmt.fmt.pix.bytesperline < min)

fmt.fmt.pix.bytesperline = min;

min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;

if (fmt.fmt.pix.sizeimage < min)

fmt.fmt.pix.sizeimage = min;

switch (io) {

case IO_METHOD_READ:

init_read(fmt.fmt.pix.sizeimage);

break;

case IO_METHOD_MMAP:

init_mmap();

break;

case IO_METHOD_USERPTR:

init_userp(fmt.fmt.pix.sizeimage);

break;

}

}

static void close_device(void) {

if (-1 == close(fd))

errno_exit("close");

fd = -1;

}

static void open_device(void) {

struct stat st;

if (-1 == stat(dev_name, &st)) {

fprintf(stderr, "Cannot identify ’%s’: %d, %s\n",

dev_name, errno, strerror(errno));

exit(EXIT_FAILURE);

}

if (!S_ISCHR(st.st_mode)) {

fprintf(stderr, "%s is no device\n", dev_name);

exit(EXIT_FAILURE);

}

fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);

20

if (-1 == fd) {

fprintf(stderr, "Cannot open ’%s’: %d, %s\n",

dev_name, errno, strerror(errno));

exit(EXIT_FAILURE);

}

}

static void usage(FILE *fp, int argc, char **argv) {

fprintf(fp,

"Usage: %s [options]\n\n"

"Version 1.0\n"

"Options:\n"

"-d | --device name Video device name [%s]\n"

"-h | --help Print this message\n"

"-m | --mmap Use memory mapped buffers [default]\n"

"-r | --read Use read() calls\n"

"-u | --userp Use application allocated buffers\n"

"-W | --width Set image width\n"

"-H | --height Set image height\n"

"-I | --interval Set frame interval (fps) [%i]\n"

"-f | --format Set pixel format [YUYV | MJPG | H264]\n"

"-t | --timeout Set capture timeout in seconds [%i]\n"

"-T | --timeouts-max Set the maximum number of timeouts [%i]\n"

"-o | --output Outputs stream to stdout\n"

"-c | --count Number of frames to grab [%i]\n"

"",

argv[0], dev_name, fps, timeout, timeouts_max, frame_count);

}

static const char short_options[] = "d:hmruW:H:I:f:t:T:oc:";

static const struct option

long_options[] = {

{ "device", required_argument, NULL, ’d’},

{ "help", no_argument, NULL, ’h’},

{ "mmap", no_argument, NULL, ’m’},

{ "read", no_argument, NULL, ’r’},

{ "userp", no_argument, NULL, ’u’},

{ "width", required_argument, NULL, ’W’},

{ "height", required_argument, NULL, ’H’},

{ "interval", required_argument, NULL, ’I’},

{ "format", required_argument, NULL, ’f’},

{ "timeout", required_argument, NULL, ’t’},

{ "timeouts-max", required_argument, NULL, ’T’},

{ "output", no_argument, NULL, ’o’},

{ "count", required_argument, NULL, ’c’},

{ 0, 0, 0, 0}

};

int main(int argc, char **argv) {

s_catch_signals ();

for (;;) {

int idx;

int c;

c = getopt_long(argc, argv,

short_options, long_options, &idx);

if (-1 == c)

21

break;

switch (c) {

case 0: /* getopt_long() flag */

break;

case ’d’:

dev_name = optarg;

break;

case ’h’:

usage(stdout, argc, argv);

exit(EXIT_SUCCESS);

case ’m’:

io = IO_METHOD_MMAP;

break;

case ’r’:

io = IO_METHOD_READ;

break;

case ’u’:

io = IO_METHOD_USERPTR;

break;

case ’W’:

// set width

width = atoi(optarg);

set_format++;

break;

case ’H’:

// set height

height = atoi(optarg);

set_format++;

break;

case ’I’:

// set fps

fps = atoi(optarg);

break;

case ’f’:

// set pixel format

if (strcmp(optarg, "YUYV") == 0 || strcmp(optarg, "yuyv") == 0) {

pixel_format = V4L2_PIX_FMT_YUYV;

set_format++;

} else if (strcmp(optarg, "MJPG") == 0 || strcmp(optarg, "mjpg") == 0) {

pixel_format = V4L2_PIX_FMT_MJPEG;

set_format++;

} else if (strcmp(optarg, "H264") == 0 || strcmp(optarg, "h264") == 0) {

pixel_format = V4L2_PIX_FMT_H264;

set_format++;

}

break;

case ’t’:

// set timeout

timeout = atoi(optarg);

22

break;

case ’T’:

// set max timeout

timeouts_max = atoi(optarg);

break;

case ’o’:

out_buf++;

break;

case ’c’:

errno = 0;

frame_count = strtol(optarg, NULL, 0);

if (errno)

errno_exit(optarg);

break;

default:

usage(stderr, argc, argv);

exit(EXIT_FAILURE);

}

}

clock_t begin, end;

double time_spent;

begin = clock();

open_device();

init_device();

start_capturing();

end = clock();

time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

fprintf(stderr, "Startup took %f seconds\n", time_spent);

mainloop();

begin = clock();

stop_capturing();

uninit_device();

close_device();

end = clock();

time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

fprintf(stderr, "Shutdown took %f seconds\n", time_spent);

fprintf(stderr, "\n");

return 0;

}

23

	Problem Background
	First Attempts with the PlayStation 3 Eye
	Shift to the Logitech C920 and MJPEG Format
	JPEG Decompression with OpenCV

	How-To: Achieve 30 fps
	Disclaimer
	Prerequisites
	Objective
	1. Install libjpeg-turbo
	2. Setting up for Distributed Cross-Compilation (Optional, but Recommended)
	3. Building OpenCV with libjpeg-turbo and NEON
	4. Testing
	Testing the Framerate

	Incorporating Custom Capture Code as an OpenCV object

	Acknowledgments
	Appendix
	framegrabberCV.c (Matthew Witherwax)

