

Building and Installing Ti Wilink 8 driver in
Linux Kernel Stack using Ti Linux SDK

Introduction
This document gives the steps that were followed to build and install the Ti wilink 8 drivers in the Linux

kernel stack running on Beaglebone green wireless board.

The Beaglebone green wireless (BBGW) board consist of AM3358 microprocessors, based on the ARM

Cortex-A8 processor. The green wireless board supports Wifi 802.11b/g/n standard through Wilink

WL1835MOD module. Ti provides mesh implementation of 802.11s standard for the Wilink 8 series,

which WL1835MOD is a part of.

The document gives details about the steps to follow to install wilink driver enabled linux kernel

filesystem and u-boot on microSD card, boot the BBGW from microSD, setup and start a mesh interface

network, and visualize the network on Windows PC using Ti Mesh Visualization Tool.

Important Links
Name Link Description

Ti Linux
Essentials
SDK

http://software-dl.ti.com/processor-sdk-
linux/esd/AM335X/latest/index_FDS.html

Package
contains
source code
for linux
kernel, u-
boot image
and pre-
built
images,
along with
the cross-
compiler
tools and
shell scripts
to install
and build
using Ti
Wilink
modules.

Build Script
and
Package

https://gforge.ti.com/gf/download/user/1160/8008/sdk3-wilink8-
am335x-v1.01.tar.gz

Contains
script which
runs the
complete
build
process to

create boot
image and
linux kernel
filesystem
with Ti
wilink 8
drivers.

Linux
Getting
Started
Guide

http://processors.wiki.ti.com/index.php/WiLink8_Linux_Getting_Started
_Guide

Guide to
build and
install
Wilink 8
drivers

Ti Mesh
Scripts
Help

http://www.ti.com/lit/an/swaa166/swaa166.pdf PDF
Document
giving the
configuratio
n of mesh
interface

Ti Mesh
Visualizatio
n Toolkit
(Windows
only)

http://www.ti.com/tool/wilink-wifi_mesh_visualization_tool Utility to
display the
mesh
network on
Windows
PC.

Ti Wilink 8 SDK Build and Install Drivers

1) Download and Run the Ti Linux Essentials installer
Download the bin file from the following link: http://software-dl.ti.com/processor-sdk-

linux/esd/AM335X/latest/index_FDS.html. The bin file is an installer that sets up the complete package

including source codes, prebuilt images, cross-compiler tools and other shell scripts. Set permissions to

run the file, and run the installer.

The default path /home/user/ti-processor-sdk-linux-am335x-evm-03.01.00.06 was used for installation.

Substitute your username in place of "user" in above path.

For more details refer link, http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Installer.

2) Download the Build scripts
The build scripts to generate the u-boot image and linux filesystem with wilink 8 support can be

downloaded from https://gforge.ti.com/gf/download/user/1160/8008/sdk3-wilink8-am335x-

v1.01.tar.gz. The package also contains patches that need to be applied to default configuration files and

device tree files for a specific board. The package contains patches for BBGW hardware as well. The files

from the package must be extracted in the TI SDK folder and not in a separate folder.

http://software-dl.ti.com/processor-sdk-linux/esd/AM335X/latest/index_FDS.html
http://software-dl.ti.com/processor-sdk-linux/esd/AM335X/latest/index_FDS.html
http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Installer
https://gforge.ti.com/gf/download/user/1160/8008/sdk3-wilink8-am335x-v1.01.tar.gz
https://gforge.ti.com/gf/download/user/1160/8008/sdk3-wilink8-am335x-v1.01.tar.gz

3) Change the Kernel Build options in the config file
The config file to be used for BBGW board is "tisdk_am335x-evm_defconfig" and is located in

${SDK_DIR}/board-support/linux-vvvv+gitAUTOINC+xxxxx/arch/arm/configs directory.

The config file needs to be updated for BBGW and to enable Ti Wilink 8 modules and disable the default

Wifi modules in Linux kernel. The list of options to be set or changed is given in the link: WL18xx

Platform Integration Guide. The link contains changes to be made in the config file and device tree files

(*.dts and *.dtsi).

The patches for configuration file was for older version of Ti Linux SDK. Hence, the changes in the config

file were done manually. For this, the options needed to be changed (as given in WL18xx Platform

Integration Guide) were copied into the "tisdk_am335x-evm_defconfig" file manually. The manually

patched file must be stored in a separate location. The following lines in "build-wilink.sh" shell file must

commented so that the patching of config file is not done.

git am ../../patches/kernel/0001-add-wilink8-configuration-to-sdk3-defconfig.patch || exit

git am ../../patches/kernel/0003-add-iptables-nat.patch || exit

git am ../../patches/kernel/0004-disable-wifi-in-kernel-build.patch || exit

Add a line to replace original "tisdk_am335x-evm_defconfig" file with manually patched configuration

file.

Add the following line at the beginning of "build-wilink.sh" shell file:

export MANUALLY_PATCHED_DEFCONFIG_FILE="${SDK_DIR}/patches/tisdk_am335x-evm_defconfig"

Change the above path to point to the location where manually patched deconfig file is placed.

Add following lines immediately after the commented out lines (given above in green):

echo "Copying manually patched defconfig file."

rm -r arch/arm/configs/tisdk_am335x-evm_defconfig

cp -v ${MANUALLY_PATCHED_DEFCONFIG_FILE} arch/arm/configs

4) Setup and Run the Wilink build shell script
Before running the "build-wilink.sh" script, some of the variables must be set correctly. The following

table lists the variables and the values used:

Name Value Set Description
ROOTFS_ON_SD 0 This will create a full tar ball of the filesystem which is

used the first time an SD card is being created by
bin/create-sdcard.sh script

WILINK_MAINLINE 0 This will build the latest and full featured TI driver
release

BBB_PLATFORM 3 Build for Seeed Studio BeagleBoneGreen Wireless

KERNEL_VER_BASE Path of Linux
filesystem
source files

This variable must be updated to the correct name of
the linux kernel filesystem source code files. It is

http://processors.wiki.ti.com/index.php/WL18xx_Platform_Integration_Guide
http://processors.wiki.ti.com/index.php/WL18xx_Platform_Integration_Guide
http://processors.wiki.ti.com/index.php/WL18xx_Platform_Integration_Guide
http://processors.wiki.ti.com/index.php/WL18xx_Platform_Integration_Guide

located in the directory ${SDK_DIR}/board_support/
named as linux-vvvv+gitAUTOINC+xxxxx

UBOOT Path to U-Boot
source files

This variable must be updated to correct filename to
build the boot image. It is located at
${SDK_DIR}/board_support/ directory under the name
u-boot-yyyy.xx+gitAUTOINC+xxxx

The script uses "*.tar.gz" files, but the TI SDK script work with "*.tar.xz" files. So, update the script to

extract the "tar.xz" file and make "tar.xz" file for the boot and rootfs outputs.

Update the line as follows:

extract full image to get all wi-fi user space tools

 cd ${FS}

 sudo tar -xf ../filesystem/tisdk-rootfs-image-am335x-evm.tar.xz .

And the lines in the end as follows:

if [${ROOTFS_ON_SD} -eq 0]

then

 sudo tar -cJf ../${TAR_FS}/rootfs_partition.tar.xz *

sudo tar -cJf ../../${TAR_FS}/boot_partition.tar.xz *

Finally, run the script from command line

./build-wilink.sh

After successful build, there must be two tarball files in the ${SDK_DIR}/tar-sdk3-wilink-filesystem-bbgw

folder:

1. boot_partition.tar.xz - Boot Partition tarball file containing MLO, U-Boot image and UEnv.txt

files.

2. rootfs_partition.tar.xz - Rootfs partition containing Linux kernel along with the Wilink driver for

mesh support.

5) Copy the Tarball files to microSD card
The two tar files mentioned above can be written to microSD card using the ${SDK_DIR}/bin/create-

sd.sh shell script. TI recommends that the script should be run from its own directory. On the terminal,

navigate to ${SDK_DIR}/bin directory. Run the sd card create script by typing:

$sudo ./create-sd.sh

Once the partitioning steps have been done select the custom file paths option

2) Enter in custom boot and rootfs file paths

and enter the FULL path to the built boot partition. eg /home/user/ti-processor-sdk-linux-am335x-

evm-03.00.00.04/tar-sensor-gateway-filesystem-e14/boot_partition.tar.xz. At the next option select

Kernel and device tree from rootfs.

1) Reuse kernel image and device tree files found in the selected rootfs

and the path to the rootfs partition. eg /home/user/ti-processor-sdk-linux-am335x-evm-

03.00.00.04/tar-sensor-gateway-filesystem-e14/rootfs_partition.tar.xz

Refer to http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_create_SD_card_script for

details about create-sd.sh shell script.

6) Modify the mesh configuration file
Modify the contents of microSD card. When the memory card is plugged into PC or laptop, you should

see two mounted partitions: "boot" and "rootfs". Navigate to the "rootfs" directory.

To run the mesh interface, the "mesh_supplicant.conf" file located in the rootfs linux kernel at directory

"usr/share/wl18xx/" must be modified to add mesh interface configuration.

The following parameters need to be modified:

Name Value Description

max_peer_links 10
mesh_max_inactivity 300 Timeout in seconds to detect mesh peer inactivity.

p2p_disabled 1 Must be set to 1 in order to disable p2p interface

Add new network
profile. Search for
network block,
beginning with
network block

OR, add it at the end.

Copy paste
from right
("Description"
column)

network={
 ssid="MESH_NETWORK_SSID"
 mode=5
 frequency=2412
 key_mgmt=NONE
 psk="12345678"
}

In the mesh_start.sh script located in the directory "usr/share/wl18xx/", change the IP address in the

last line so that each device will have unique IP on the mesh network.

7) Boot BBGW from microSD card
Plug the microSD card into BBGW. Press and hold the USER/BOOT Button and plug in the mini-USB to

USB connector to PC to power ON the BBGW. The BGW should boot from microSD card. This can be

seen in serial console window. For details of serial cable connection and setup for serial debugging, visit

link https://codechief.wordpress.com/2013/11/11/beaglebone-black-serial-debug-connection/

8) Start the mesh network
After boot-up, the BBGW provides ethernet over USB connection at IP 192.168.7.2. The PC or laptop

should show a new local area connection with PC's IP 192.168.7.1 or any other IP other than

192.168.7.2.

If the network is not visible, hard reset the BBGW by plugging OUT the BBGW device and booting again

to microSD card. The new network should be setup.

After a new local area connection is setup, login to BBGW via ssh by typing

$ssh root@192.168.7.2

http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_create_SD_card_script
https://codechief.wordpress.com/2013/11/11/beaglebone-black-serial-debug-connection/
mailto:root@192.168.7.2

Change directory to "/usr/share/wl18xx/". Start the mesh script by typing,

sh mesh_start.sh

You should see the mesh network created successful message at the end of the logs. When there are

already devices connected to the network, the HWaddr of the connected devices are also printed.

The mesh interface can be seen by typing ifconfig of terminal. The mesh interface is named "mesh0" and

should have a valid IP assigned.

Refer document http://www.ti.com/lit/an/swaa166/swaa166.pdf for more details and other

configurations for mesh network.

9) Visualizing mesh network
Steps 5,6,7,8 must be repeated for each BBGW device on the mesh network. The steps for visualizing

the mesh network on windows PC is given in the document

http://www.ti.com/lit/ug/swru480/swru480.pdf.

He mesh was visualized using the "Mesh Point as Router (Using DHCP)" operation mode. The IP to

connect is 192.168.7.2.

10) Flashing Boot and Rootfs from SD card to eMMC

Please follow the following steps to flash image to eMMC:

1. Run the BBB from the SD card (hold the USR button when powering the board up)

2. The eMMC is /dev/mmcblk1. Format it this way:

 2.01. fdisk /dev/mmcblk1

 2.02. o - this clears the existing partitions

 2.03. p - this lists all partition tables on the card (there should be none)

 2.04. n - create a new partition

 2.05. p - primary partition

 2.06. 1 - partition number

 2.07. 2048 - default value for the first sector

 2.08. +70M - last sector / partition size

 2.09. t - change the partition type (select partition 1)

 2.10. c - change the partition type to "W95 FAT32 (LBA)"

 2.11. a - set the bootable flag for the selected partition (1)

 2.12. n - create a new partition

 2.13. p - primary partition

 2.14. 2 - partition number

 2.15. hit Enter to choose the default (next available) value for the first sector

 2.16. hit Enter to choose the default (last) value for the last sector

 2.17. p - this lists all partition tables on the card (there should be two)

 2.18. w - write all the above changes to disk

 2.19. umount /dev/mmcblk1p1; mkfs.vfat -F 32 /dev/mmcblk1p1 - format the first partition

 2.20. umount /dev/mmcblk1p2; mkfs.ext3 /dev/mmcblk1p2 - format the second partition

http://www.ti.com/lit/an/swaa166/swaa166.pdf
http://www.ti.com/lit/ug/swru480/swru480.pdf

Now you are formatted eMMC with 2 partitions. First is "W95 FAT32 (LBA)" and second is Linux. If you

want to make this eMMC bootable you can make nwxt steps:

3. Copy the {MLO,u-boot.img,uEnv.txt} files to the first partition:

 # mkdir boot

 # mount /dev/mmcblk1p1 boot

 # cp {MLO,u-boot.img,uEnv.txt} boot

 # umount boot

4. Copy the root file system to the second partition:

 # mkdir root

 # mount /dev/mmcblk1p2 root

 # tar -xJf rootfs_partition.tar.xz -C root

 # umount root

5. Shutdown the BBB, remove the SD card and start it from the eMMC.

	Introduction
	Important Links
	Ti Wilink 8 SDK Build and Install Drivers
	1) Download and Run the Ti Linux Essentials installer
	2) Download the Build scripts
	3) Change the Kernel Build options in the config file
	4) Setup and Run the Wilink build shell script
	5) Copy the Tarball files to microSD card
	6) Modify the mesh configuration file
	7) Boot BBGW from microSD card
	8) Start the mesh network
	9) Visualizing mesh network
	10) Flashing Boot and Rootfs from SD card to eMMC

