
Alessandro Osima
Milan, 22 April 2013

Evdev like userspace/kernelspace communication system for input
devices

About you

What is your name?
Alessandro Osima

What is your email address?
alex.osima@gmail.com
alex_osima@yahoo.it

What is your eLinux.org wiki username?
Asion

What is your IRC nickname?
asion

What is the name of your School and in what country?
Italy, Università Degli Studi di Milano pursuing a B.Sc. in computer science

What is your primary language?
Italian

Where are you located, and what hours do you tend to work?
I live in Milan (GMT +2). During summer I usually work from 11:00 a.m to 4:00
p.m and/or from 11:00 p.m to 3:00 a.m but I can easily change my work
schedule to adapt to my mentor’s needs

Have you participated in an open-source project before?
I have never directly contributed to an open-source project but I have used
a lot of open source products like the raspberry pi and various linux distros
both personally and for my university studies.

mailto:alex.osima@gmail.com
mailto:alex.osima@gmail.com
mailto:alex_osima@yahoo.it
mailto:alex_osima@yahoo.it

I think I have enough experience to give something back to the open-
source community and to help make better software that everyone can
freely use and improve.

About your project

What is the name of your project?
Evdev like userspace/kernelspace communication system for input devices

Describe your project in 10-20 sentences. What are you making? For whom
are you making it, and why do they need it? What technologies will you be
using?
This project aims to build a new kernel subsystem designed to offer an api
for input device drivers and input subsystems to communicate with
userspace throughout file operations on files residing in the /dev directory.
For every device driver that will register with nevdev (new evdev) a new file
will be placed in the /dev/nevdev directory, ready to intercept read/write/
ioctls syscalls from userspace applications.
To remain abstract from a particular subsystem nevdev will not handle these
calls directly or implement some kind of global interface. It will just redirect
them to the proper device, granting every subsystem, like iio or input, the
possibility to offer its own interface that can then be recovered by
userspace trough ioctls calls.

This project was initially focused on offering an iio drivers debug interface
but thanks to some advice of my would-be mentor Hunyue Yau, I turned to
build a more robust and general interface based on the evdev design.
This project will provide driver developers, who use iio or input subsystems, a
common way to communicate with userspace applications resolving a
problem that is troubling iio developers, as explained in this post http://
us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-
help-203768792.html.

Evdev itself can not be directly used, because it is too entangled with the
input subsystem to be efficiently abstracted from it. Anyway a part of the
code of evdev and its basic approach are reused in nevdev.
Also, Nevdev design will ensure backward compatibility with the current
evdev userspace event-based api, thus requiring no changes in userspace
applications (like evtest) or libraries.

http://us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-help-203768792.html
http://us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-help-203768792.html
http://us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-help-203768792.html
http://us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-help-203768792.html
http://us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-help-203768792.html
http://us.generation-nt.com/answer/rfc-iio-options-event-userspace-interface-help-203768792.html

Nevdev will offer a simple api based on the register/unregister functions like
other kernel subsystems.

Internally nevdev will be composed by a list of handles corresponding to all
the registered devices.
When a new device is registered, nevdev will create a new handle
containing a struct device, a cdev and a file_operations structure.
The registering driver will provide its device structure to be used by nevdev
as the new handle’s device parent and a file_operations structure.
The hotplug event resulting from the handle device structure allocation and
registration will be used by a simple udev script to populate the /dev/
nevdev directory.
All the the file i/o calls executed on /dev/nevdev on the newly registered file
will be then intercepted and sent to the registered driver file_operations
structure thanks to the allocation of the handle cdev structure with the
handle’s device struct major and minor numbers.

What is the timeline for development of your project? The Summer of Code
work period is about 11 weeks long; tell us what you will be working on each
week.

Period of time Goals

May In my freetime I will gain more experience with the
beaglebone, its modded 3.x kernel, the input and
iio subsystems by writing a couple of test drivers,
doing some evdev modding and reading more
kernel source code.
I will also keep in touch with my mentor so that I
can start coding as soon as gsoc begins.

Community bonding period Review my project and my work schedule with my
mentor and fix eventual shortcomings.

17 june - 7 july Implement the basics of nevdev:
1) subsystem initialization and de-initialization
2) device adding and removal to nevdev
3) implement all the concurrency primitives

7 july -14 july Test the code

14 july - 4 august 1) write the final kernel side api
2) write the udev script to export the sys files in a /

dev subfolder and write a cdev

4 august - 11 august Test the code

11 august - 25 august 1) integrate cdev into the codebase to receive
file i/o callbacks from /dev

2) write a subsystem wide ioctls interface

Period of time Goals

25 august - 1 september Test the code and start writing some
documentation

1 september - 8 september Implement file_operations redirection to the
registered subsystems trough their file_ops
structures obtained during device registration

8 september - 23 september 1)test the final code
2)write documentation and examples
3)submit the code for final evaluation

Convince us, in 5-15 sentences, that you will be able to successfully
complete your project in the timeline you have described.
I have been working with C/C++ for over 4 years. I started studying it by
myself because I was curios about game programming and after a while I
became more interested to the inner working of operating systems rather
than games.
For this reason I started using linux and reading its source code.
I kept following this passion when I decided to study computer science.
While at university I learned a lot more about operating systems and
computer architecture.
Six months ago I bought a raspberry pi and started working with it.
Thanks to the pi I refined my knowledge of electronics and low level
programming.
Over the years I have written some simple games using opengl and c++.
For my computer architecture exam I created a cuda application designed
to efficiently apply a median filter on a matrix of pixels. On the pi I wrote
various programs to take advantage of the gpio and spi interfaces, I have
also done some programming with code running directly on the board
without using an operating system. You can find some of this projects on my
bitbucket page https://bitbucket.org/dashboard/overview.

During the coding weeks:
I plan to keep a github repository with all the code and documentation I will
produce.
Every week I will post on the mailing list and on irc a progress report
documenting all the tasks I have completed and the ones I will do the
following week.

https://bitbucket.org/dashboard/overview
https://bitbucket.org/dashboard/overview

Also I will coordinate with the linux-input community and request comments,
opinions and reviews to increase the chances of an inclusion in the mainline
kernel.

Goals:
The project will be initially based on the current beaglebone kernel and use
the bone as the main testing platform.
I will not use any beaglebone specific part of the kernel because I aim to
upload it in the mainline linux kernel. This will probably happen at the end of
the project or even later on, because of the long time possibly required for a
successful inclusion upstream.

You and the community

If your project is successfully completed, what will its impact be on the
BeagleBoard.org community?
This project would help not only the beagleboard community but the entire
linux-input drivers developers community by offering a simple clean
interface that can be used by most input device drivers to communicate
easily with userspace.
With nevdev everything a driver has to do is to register his device structure
and intercept the file i/o calls, letting the new subsystem do all the rest of
the job.

One problem that this project can easily solve is the one detailed in this year
project ideas page by Hunyue Yau related to iio debugging drivers. IIO can
set up an userspace interface by just registering a device with nevdev and
then handle all the read file_operations on that device.
Then a userspace program can receive all the events sent from an iio
device with a simple read on the corresponding device file in the /dev
directory.
This approach can be easily replicated with most input device drivers.

What will you do if you get stuck on your project and your mentor isn't
around?
First thing I will debug the code over and over to be sure I’m really stuck and
not only momentarily lost.

If unsuccessful I will think about different ways to resolve my problem
helping myself with an exhaustive search on books, google, forums, mailing
list and irc backlogs.
In the very unlikely case all the previous steps still left the problem unresolved
I will probably ask on IRC or on a mailing list if someone has encountered a
similar problem before.

